Improving protein structure prediction using multiple sequence-based contact predictions.

نویسندگان

  • Sitao Wu
  • Andras Szilagyi
  • Yang Zhang
چکیده

Although residue-residue contact maps dictate the topology of proteins, sequence-based ab initio contact predictions have been found little use in actual structure prediction due to the low accuracy. We developed a composite set of nine SVM-based contact predictors that are used in I-TASSER simulation in combination with sparse template contact restraints. When testing the strategy on 273 nonhomologous targets, remarkable improvements of I-TASSER models were observed for both easy and hard targets, with p value by Student's t test<0.00001 and 0.001, respectively. In several cases, template modeling score increases by >30%, which essentially converts "nonfoldable" targets into "foldable" ones. In CASP9, I-TASSER employed ab initio contact predictions, and generated models for 26 FM targets with a GDT-score 16% and 44% higher than the second and third best servers from other groups, respectively. These findings demonstrate a new avenue to improve the accuracy of protein structure prediction especially for free-modeling targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments

MOTIVATION The accurate prediction of residue-residue contacts, critical for maintaining the native fold of a protein, remains an open problem in the field of structural bioinformatics. Interest in this long-standing problem has increased recently with algorithmic improvements and the rapid growth in the sizes of sequence families. Progress could have major impacts in both structure and functio...

متن کامل

SAM-T08, HMM-based protein structure prediction

The SAM-T08 web server is a protein structure prediction server that provides several useful intermediate results in addition to the final predicted 3D structure: three multiple sequence alignments of putative homologs using different iterated search procedures, prediction of local structure features including various backbone and burial properties, calibrated E-values for the significance of t...

متن کامل

Improvements in structural contact prediction : opportunities in prediction difficulty and pairing preference of amino acids

Proteins are complicated molecules and their three-dimensional structure provides information about their functionality. These three-dimensional structures are determined by specific amino acid sequences. Hidden information in amino acid sequences, in particular homologous sequences, may offer possibilities in obtaining the three-dimensional structures of proteins. A common method to identify p...

متن کامل

Improving accuracy of protein contact prediction using balanced network deconvolution.

Residue contact map is essential for protein three-dimensional structure determination. But most of the current contact prediction methods based on residue co-evolution suffer from high false-positives as introduced by indirect and transitive contacts (i.e., residues A-B and B-C are in contact, but A-C are not). Built on the work by Feizi et al. (Nat Biotechnol 2013; 31:726-733), which demonstr...

متن کامل

A comprehensive assessment of sequence-based and template-based methods for protein contact prediction

MOTIVATION Pair-wise residue-residue contacts in proteins can be predicted from both threading templates and sequence-based machine learning. However, most structure modeling approaches only use the template-based contact predictions in guiding the simulations; this is partly because the sequence-based contact predictions are usually considered to be less accurate than that by threading. With t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2011